Nonnegative linearization of the associated $g$-ultraspherical polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonnegative linearization for little q-Laguerre polynomials and Faber basis

The support of the orthogonality measure of so-called little q-Laguerre polynomials {ln(.; a|q)}n=0, 0 < q < 1, 0 < a < q−1, is given by Sq = {1, q, q, . . .} ∪ {0}. Based on a method of MÃlotkowski and Szwarc we deduce a parameter set which admits nonnegative linearization. We additionally use this result to prove that little q-Laguerre polynomials constitute a so-called Faber basis in C(Sq).

متن کامل

A new characterization of ultraspherical polynomials

We characterize the class of ultraspherical polynomials in between all symmetric orthogonal polynomials on [−1, 1] via the special form of the representation of the derivatives pn+1(x) by pk(x), k = 0, ..., n.

متن کامل

Ultraspherical Type Generating Functions for Orthogonal Polynomials

We characterize the probability distributions of finite all order moments having generating functions for orthogonal polynomials of ultraspherical type. 1. Motivation: Meixner families There is a one to one correspondance between probability distributions on the real line and polynomials of a one variable satisfying a three-terms recurrence relation subject to some positive conditions ([9]). Th...

متن کامل

Ultraspherical Type Generating Functions for Orthogonal Polynomials

We characterize, up to a conjecture, probability distributions of finite all order moments with ultraspherical type generating functions for orthogonal polynomials. 1. Motivation: Meixner families There is a one to one correspondance between probability distributions on the real line and polynomials of a one variable satisfying a three-terms recurrence relation subject to some positivity condit...

متن کامل

Constrained Ultraspherical-Weighted Orthogonal Polynomials on Triangle

We construct Ultraspherical-weighted orthogonal polynomials C (λ,γ) n,r (u, v, w), λ > − 2 , γ > −1, on the triangular domain T, where 2λ + γ = 1. We show C (λ,γ) n,r (u, v, w), r = 0, 1, . . . , n; n ≥ 0 form an orthogonal system over the triangular domain T with respect to the Ultraspherical weight function. Mathematics Subject Classification: 33C45, 42C05, 33C70

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Methods and Applications of Analysis

سال: 1995

ISSN: 1073-2772,1945-0001

DOI: 10.4310/maa.1995.v2.n4.a2